Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sema Öztürk Yıldırım, ${ }^{\text {a }}$ Mehmet Akkurt, ${ }^{\text {a* }}$ Hasan Küçükbay, ${ }^{\text {b }}$ Ersin Orhan ${ }^{\text {c }}$ and Orhan Büyükgüngör ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, ${ }^{\text {c }}$ Department of Chemistry, Faculty of Arts and Sciences, Karaelmas University, 67100 Zonguldak, Turkey, and
${ }^{\text {d }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.042$
$w R$ factor $=0.113$
Data-to-parameter ratio $=14.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

6-Nitro-1-(2-phenylethyl)-1H-benzimidazole

The title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$, was synthesized from 5nitrobenzimidazole, 2-bromoethylbenzene and KOH in ethanol. The phenyl and benzimidazole ring systems are each planar and make a dihedral angle of $43.9(1)^{\circ}$. The crystal structure is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bond interactions.

Comment

In recent years, considerable attention has been given to the synthesis of nitrobenzimidazole compounds because of their pharmacological properties (Sarlauskas et al., 1997). We have synthesized and investigated the crystal structures of some benzimidazole and nitrobenzimidazole derivatives (Akkurt et al., 2005). We now report the synthesis of a biologically interesting nitrobenzimidazole compound, its crystal structure and a comparison of the results with our previous studies related to heterocycles (Akkurt, Öztürk, Küçükbay et al., 2004; Akkurt, Öztürk, Şireci et al., 2004).

(I)

A molecular view of (I) is shown in Fig. 1. The geometric parameters agree with those previously reported (Akkurt, Öztürk, Küçükbay et al., 2004; Akkurt, Öztürk, Şireci et al., 2004; Akkurt et al., 2005). The conformation of the phenyl ring with respect to the benzimidazole ring is described by the $\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ torsion angle of $-60.6(2)^{\circ}$. The dihedral angle between the planes of the phenyl and benzimidazole ring systems is $43.9(1)^{\circ}$. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions generate a chain parallel to the a axis (Table 1 and Fig. 2).

Experimental

5-Nitrobenzimidazole ($2.0 \mathrm{~g}, 12.26 \mathrm{mmol}$) and 2-bromoethylbenzene $(1.7 \mathrm{ml}, 12.27 \mathrm{mmol})$ were added to a solution of $\mathrm{KOH}(1.02 \mathrm{~g}$, $18.39 \mathrm{mmol})$ in ethanol $(25 \mathrm{ml})$ and the mixture was refluxed for 5 h . The precipitated KBr was then filtered off while the solution was still hot. The solution was cooled to room temperature, and the crude product was precipitated and then crystallized from ethanol (10 ml) (yield $2.58 \mathrm{~g}, 79 \%$; m.p. $409-410 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.2(t$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.5\left(t, \mathrm{~N}-\mathrm{CH}_{2} \mathrm{CH}_{2}, 2 \mathrm{H}\right), 7.0-8.3(m, \mathrm{Ar}-\mathrm{H}, 8 \mathrm{H}), 8.7$ $\left(s\right.$, benzimidazole- $\mathrm{C} 2-\mathrm{H}, 1 \mathrm{H}$). Analysis calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C 67.42, H 4.85, N 15.73\%; found: C 67.25, H 4.83, N 15.67\%.

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of (I), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=267.28$
Monoclinic, $P 2_{1} / c$
$a=6.6382(6) \AA$
$b=11.4258(6) \AA$
$c=18.2702(16) \AA$
$\beta=107.039(7)^{\circ}$
$V=1324.91(19) \AA^{3}$
$Z=4$

$$
D_{x}=1.340 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 11275 reflections
$\theta=2.1-28.0^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, colourless
$0.40 \times 0.26 \times 0.09 \mathrm{~mm}$
Data collection
Stoe IPDS-II diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.971, T_{\max }=0.992$
14688 measured reflections
2570 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.113$
$S=0.93$
2570 reflections
182 parameters
H -atom parameters constrained
1674 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.089$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-8 \rightarrow 7$
$k=-14 \rightarrow 14$
$l=-22 \rightarrow 22$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0641 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.12 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.14 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.008(2)
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.97	2.60	$3.509(2)$	156

Symmetry code: (i) $x-1, y, z$.
H atoms were positioned geometrically and refined with a riding model, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ constrained to be 1.2 times $U_{\text {eq }}$ of the carrier atom.

Figure 2
Part of the crystal packing of (I). Hydrogen bonds are shown as dashed lines, and H atoms on atoms not involved in the motifs shown have been omitted. [Symmetry code: (i) $x-1, y, z$.]

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayis University, Turkey, for the use of the diffractometer (purchased under grant F. 279 of the University Research Fund). HK and EO thank Ínönü University Scientific Research Unit (BAPB-2005/36) for financial support for this study.

References

Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. \& Büyükgüngör, O. (2004). Acta Cryst. E60, o219-o221.
Akkurt, M., Öztürk, S., Şireci, N., Küçükbay, H. \& Büyükgüngör, O. (2004). Acta Cryst. E60, o1185-o1187.
Akkurt, M., Yıldırım Öztürk, S., Küçükbay, H., Yılmaz, Ü. \& Büyükgüngör, O. (2005). Acta Cryst. E61, o301-o303.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sarlauskas, J., Dickancaite, E., Nemeikaite, A., Anusevicius, Z., Nivinskas, H., Segura-Aguilar, J. \& Cenas, N. (1997). Arch. Biochem. Biophys. 346, 219229.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

